Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats.

نویسندگان

  • Xiang Yang Chen
  • Yi Chen
  • Lu Chen
  • Ann M Tennissen
  • Jonathan R Wolpaw
چکیده

Previous studies have shown that corticospinal tract (CST) transection, but not transection of other major spinal cord tracts, prevents down-conditioning of the H-reflex, the electrical analog of the spinal stretch reflex. This study set out to determine whether the loss of the capacity for H-reflex down-conditioning caused by CST transection is permanent. Female Sprague-Dawley rats received CST, lateral column (LC), or dorsal column ascending tract (DA) transection at T8-9; 9-10 months later, they were exposed to the H-reflex down-conditioning protocol for 50 days. In the LC and DA rats, H-reflex size fell to 60 (+/- 9 SEM)% and 60 (+/- 19)%, respectively, of its initial size. This down-conditioning was comparable to that of normal rats. In contrast, H-reflex size in the CST rats rose to 170 (+/- 42)% of its initial size. A similar rise does not occur in rats exposed to down-conditioning shortly after CST transection. These results indicate that CST transection permanently eliminates the capacity for H-reflex down-conditioning and has gradual long-term effects on sensorimotor cortex function. They imply that H-reflex down-conditioning can be a reliable measure of CST function for long-term studies of the effects of spinal cord injury and/or for evaluations of the efficacy of experimental therapeutic procedures, such as those intended to promote CST regeneration. The results also suggest that the role of sensorimotor cortex in down-conditioning extends beyond generation of the essential CST activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditioned H-reflex increase persists after transection of the main corticospinal tract in rats.

The brain shapes spinal cord function throughout life. Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex (SSR), is a relatively simple model for exploring the spinal cord plasticity underlying this functional change and may provide a new method for modifying spinal cord reflexes after spinal cord injury. In response to an operant conditioning protocol, rat...

متن کامل

Sensorimotor cortex ablation prevents H-reflex up-conditioning and causes a paradoxical response to down-conditioning in rats.

Operant conditioning of the H-reflex, a simple model for skill acquisition, requires the corticospinal tract (CST) and does not require other major descending pathways. To further explore its mechanisms, we assessed the effects of ablating contralateral sensorimotor cortex (cSMC). In 22 Sprague-Dawley rats, the hindlimb area of left cSMC was ablated. EMG electrodes were implanted in the right s...

متن کامل

RAPID COMMUNICATION Dorsal Column But Not Lateral Column Transection Prevents Down- Conditioning of H Reflex in Rats

Chen, Xiang Yang and Jonathan R. Wolpaw. Dorsal column Wolpaw 1995a,b, 1996). Motivated by a paradigm in which but not lateral column transection prevents down-conditioning of reward depends on reflex amplitude, both primates and rats H reflex in rats. J. Neurophysiol. 78: 1730–1734, 1997. Operant can gradually increase or decrease the SSR or the H reflex. conditioning of the H reflex, the elec...

متن کامل

Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats.

While studies of cerebellar involvement in learning and memory have described plasticity within the cerebellum, its role in acquisition of plasticity elsewhere in the CNS is largely unexplored. This study set out to determine whether the cerebellum is needed for acquisition of the spinal cord plasticity that underlies operantly conditioned decrease in the H-reflex, the electrical analog of the ...

متن کامل

Probable corticospinal tract control of spinal cord plasticity in the rat.

Descending activity from the brain shapes spinal cord reflex function throughout life, yet the mechanisms responsible for this spinal cord plasticity are poorly understood. Operant conditioning of the H-reflex, the electrical analogue of the spinal stretch reflex, is a simple model for investigating these mechanisms. An earlier study in the Sprague-Dawley rat showed that acquisition of an opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2006